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Abstract

Functional connectivity, as estimated using resting state functional MRI, has shown

potential in bridging the gap between pathophysiology and cognition. However, clini-

cal use of functional connectivity biomarkers is impeded by unreliable estimates of

individual functional connectomes and lack of generalizability of models predicting

cognitive outcomes from connectivity. To address these issues, we combine the

frameworks of connectome predictive modeling and differential identifiability. Using the

combined framework, we show that enhancing the individual fingerprint of resting

state functional connectomes leads to robust identification of functional networks

associated to cognitive outcomes and also improves prediction of cognitive outcomes

from functional connectomes. Using a comprehensive spectrum of cognitive out-

comes associated to Alzheimer's disease (AD), we identify and characterize functional

networks associated to specific cognitive deficits exhibited in AD. This combined

framework is an important step in making individual level predictions of cognition

from resting state functional connectomes and in understanding the relationship

between cognition and connectivity.
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1 | INTRODUCTION

The biological underpinnings of all neurodegenerative disorders

remain poorly understood, contributing significantly to the bottleneck

in treating these disorders (Montague, Dolan, Friston, & Dayan, 2012).

In recent years, the application of analyses based on complex systems

approaches for understanding how neural activity and connectivity

facilitate cognition has led to significant strides in characterizing these

disorders (Fornito & Bullmore, 2015; Fornito, Zalesky, &

Breakspear, 2015). One such approach, functional brain con-

nectomics, models functional brain networks as pairwise statistical

dependencies in regional neural activity. This provides a framework to

assess critical aspects of the brain, such as integration and segregation

(Sporns, 2013), and ultimately communication (Avena-Koenigsberger,

Misic, & Sporns, 2017; Bullmore & Sporns, 2009). At the same time,

the advent of functional MRI (fMRI) has allowed for in-vivo characteri-

zation of whole brain functional connectomes (FC) in humans

(Bullmore & Sporns, 2009), leading to the discovery of several critical

brain networks implicated in schizophrenia, attention deficit hyperac-

tivity disorder, autism, and Alzheimer's disease (AD) (Fornito &

Bullmore, 2015).

Despite their potential to enhance our understanding of neuro-

logic disorders, approaches based on functional connectivity have not

yet been used translationally in the treatment of cognitive and behav-

ioral disorders (Yahata, Kasai, & Kawato, 2017; Yamada et al., 2017).

To advance the treatment of such disorders, there is a critical need to

develop clinical biomarkers that are (a) robustly modulated by disease

mechanisms and (b) specifically associated with disease related out-

comes (Yamada et al., 2017). Though functional connectivity has

shown potential in bridging the gap between pathophysiology and

cognition, its clinical use is impeded by unreliable estimation of sub-

ject level FC (Braun et al., 2012), lack of precision in inter-subject dif-

ferentiability in FC (Noble et al., 2017), and lack of generalizability of

models predicting subject-level cognitive outcomes from FC (Yamada

et al., 2017). Here we show that improving the subject level finger-

print of resting-state FC also improves prediction of a heterogeneous

set of cognitive deficits in AD, both in new data from the training

cohort as well as data from a validation cohort. We also identify func-

tional networks associated to specific cognitive deficits

exhibited in AD.

1.1 | Toward improving clinical utility of FC

While FC shows differential group level associations across cognitive

outcomes (Amico, Arenas, & Goni, 2019; Amico & Goñi, 2018) and

across disease conditions (Badhwar et al., 2017; Brier, Thomas, &

Ances, 2014; Contreras et al., 2017; Fornito et al., 2015; Fornito &

Bullmore, 2015; Svaldi et al., 2018), it falls short of predicting clinically

meaningful outcomes at the individual level. The reason for this, is

insufficient “fingerprint” or within-subject reliability and between-

subject differentiability to capture individual differences that may be

related to cognition or behavior (Amico & Goñi, 2018; Finn

et al., 2015; Mars, Passingham, & Jbabdi, 2018; Pallares et al., 2018;

Satterthwaite, Xia, & Bassett, 2018; Seitzman et al., 2019). In terms of

reliability of FC, it has been shown that reasonable reliability can be

achieved with sufficient scan length and that this reliability can be

improved when multiple sessions of FC are used (Birn et al., 2013;

Noble et al., 2017; Noble, Scheinost, & Constable, 2019). Studies have

also shown that FC reliability is different across the brain, with larger

cortical nodes displaying the most reliability and within network con-

nections exhibiting greater reliability than between network connec-

tions (Noble et al., 2017). Several studies have also shown that

frequently used 6 min fMRI acquisitions do not have adequate reliabil-

ity at the edge level, posing significant issues on numerous available

clinical fMRI datasets when performing subject level associations. In

terms of inter-subject differentiability, recent efforts have shown that

individuals can be reasonably distinguished from each other using FC,

as measured by identification rate (Amico & Goñi, 2018; Finn

et al., 2015, 2017), perfect separability rate (Finn et al., 2015, 2017;

Noble et al., 2017), or differential identifiability (Amico & Goñi, 2018).

Furthermore, it has been shown that individual level fingerprinting

improves with longer scan length (Amico & Goñi, 2018; Noble

et al., 2017) and when subjects are performing specific tasks (Finn

et al., 2017). Finally, there is evidence that FC fingerprint is reduced in

individuals with neurologic or psychiatric conditions (Kaufmann

et al., 2017, 2018; Svaldi et al., 2018), making association of FC with

disease related phenotypes more difficult.

Evidence for fingerprint in FC has opened the door for efforts to

improve prediction of cognition and behavior from FC (Scheinost

et al., 2019; Shen et al., 2017; Yahata et al., 2017; Yamada

et al., 2017; Yoo et al., 2018). Predictive pipelines typically involve:
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(a) feature reduction to find FC features that are associated with spe-

cific cognitive outcomes, (b) training of a predictive model using these

features to predict cognitive outcomes, and (c) evaluation of the accu-

racy and generalizability of resulting models on external data. It has

been demonstrated that using multiple connectomes across sessions

or connectomes from different tasks improves predictive power (Gao,

Greene, Constable, & Scheinost, 2019). However, how test/retest reli-

ability of FC features affects their contribution to predicting cognition

or behavior is still under debate. One study found no association

between the test/retest reliability of a given functional edge and the

predictive value of the edge in external data (Noble et al., 2017). How-

ever, another study (Amico & Goñi, 2018) showed increased predic-

tion accuracy when edges were chosen based on correlation to

cognitive outcome and test/retest reliability, after using PCA to opti-

mize differential identifiability to uncover FC fingerprints.

Though strategies such as increased scan length, multiple acquisi-

tions and adding task-based fMRI may be useful for improving predic-

tion of relevant outcomes, they may not be feasible in clinical settings.

Reasons include the associated cost of increased scan time, dimin-

ished tolerance in patient populations to long scan times, and impaired

ability of patients in performing tasks. Additionally, there are numer-

ous available datasets (Abbas et al., 2015; Amico et al., 2017; Contre-

ras et al., 2017; Petersen et al., 2010; Xiao et al., 2017) with

acquisition protocols that do not have adequate reliability (Noble

et al., 2017) for subject level prediction. Finally, prediction of cognitive

outcomes in neurologic and psychiatric populations remains a chal-

lenge as these subjects appear to have a reduced fingerprint

(Kaufmann et al., 2017, 2018). To address such issues, Amico and

Goñi proposed the differential identifiability framework (fÞ (Amico &

Goñi, 2018), which is a principal component analysis (PCA) based den-

oising algorithm to uncover fingerprints in FC and improve between-

subject differentiability at the same time. Using data from

100 unrelated subjects in the Human Connectome Project, they dem-

onstrated improvements in FC fingerprint beyond what could be

achieved by increasing scan length (Amico & Goñi, 2018). This

improvement was also observed in FC data from the Alzheimer's Dis-

ease Neuroimaging Initiative (ADNI), a dataset with more traditional

acquisition consisting of 140 volumes (7 min scan) split in half to

mimic a test/retest setting (Svaldi et al., 2018). Thus, the f framework

demonstrated improvements in fingerprinting in a “traditional” acqui-

sition performed on a clinical population. However, there is still con-

flicting evidence on whether increasing FC fingerprint subsequently

improves prediction of clinically relevant outcomes. It is important to

note that the abovementioned studies specifically assessed whether

the test/retest reliability of a functional edge affected the predictive

value of that edge in external subjects. Hence, two important ques-

tions remain open (a) the level of agreement in feature selection

between test and retest data from the same subjects and (b) whether

a model built on test data would generalize to re-test data from the

same subjects. These two questions are critical, since good perfor-

mance of predictive models in a test/retest setting is a minimum stan-

dard that should be met before testing on external data. Lack of

agreement in feature selection between test and retest data indicates

a model that overfits the training data and is not generalizable, even

to a new session of the same training subjects. Even if this model is

somewhat generalizable to external subjects, if it lacks test–retest

agreement in feature selection, the model is likely overparametrized

and selecting arbitrary features.

In this work, we test the effect of the differential f on key prop-

erties of models predicting cognitive outcomes related to AD from FC

data. We assess performance of the models in both a test/retest set-

ting and in generalization to validation data. When choosing key prop-

erties to assess the quality of predictive models for the purposes of

predicting and understanding cognitive associations to the brain, it is

important to keep in mind that interpretation of anatomical locations

of the cognitive correlates of FC are as relevant as the accuracy of

prediction. Hence, confirming robustness in the identification of FC

features should precede model fitting and assessments of model accu-

racy. Further, it is important to note that the robustness of both fea-

ture selection and coefficient estimation can significantly influence

model accuracy and generalizability. Therefore, we propose to evalu-

ate three critical properties for well-behaved FC-based predictive

models: (a) stability of feature selection in a test/retest setting,

(b) specificity of edge selection, and (c) generalizability of the predic-

tion to new data from the same subjects and to validation data.

1.2 | Opportunities in AD

We chose to evaluate these effects in data from the ADNI2, which

consists of subjects spanning the AD spectrum. The heterogeneous,

gradual progression of cognitive deficits in AD is particularly amenable

to study the quality of models predicting cognition from FC. Briefly, in

the stage of mild cognitive impairment (MCI) subjects typically mani-

fest episodic memory decline, which is later accompanied by subtle

deficits in other domains, and ultimately results in progressive func-

tional impairment as the subject transitions through the mild, moder-

ate and severe stages of dementia (Aggarwal, Wilson, Beck, Bienias, &

Bennett, 2005; Cloutier, Chertkow, Kergoat, Gauthier, &

Belleville, 2015; Lambon Ralph, Patterson, Graham, Dawson, &

Hodges, 2003; Zhao et al., 2014). Within the AD spectrum there is

much individual heterogeneity in terms of disease presentation and

progression over time (Lambon Ralph et al., 2003), making predictive

modeling at the subject level important.

The association between FC changes and cognitive deficits in AD

has been subject of intense study to date (Contreras et al., 2017;

Wook Yoo et al., 2015; Zhan et al., 2016). Changes in functional net-

works, primarily the default mode and frontoparietal networks, have

been consistently replicated between diagnostic groups (Buckner

et al., 2005, 2009; Seeley, Crawford, Zhou, Miller, & Greicius, 2009).

Recent studies indicate that FC data can predict subject level diagnos-

tic status (Vogel et al., 2018) and global cognitive decline (Lin

et al., 2018) with reasonable accuracy. Several studies also show rela-

tionships between FC data and deficits in specific cognitive domains

associated with AD (Contreras et al., 2017; Duchek et al., 2013; Zhan

et al., 2016).
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In this work, beyond assessing group level associations to specific

cognitive domains or individual level prediction of cognitive status

(impaired vs. non-impaired), we present a framework that improves

the ability of FC to predict subject level deficits from different cogni-

tive domains. This additionally enables us to assess which RSNs are

globally associated to cognition in AD versus RSNs associated to spe-

cific deficits observed in AD.

2 | METHODS

2.1 | Subject demographics and cognitive
performance

Data used in the preparation of this article were obtained from the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as

a public-private partnership, led by Principal Investigator Michael

W. Weiner, MD. The primary goal of ADNI has been to test whether

serial magnetic resonance imaging (MRI), positron emission tomogra-

phy (PET), other biological markers, and clinical and neuropsychologi-

cal assessment can be combined to measure the progression of MCI

and AD. For up-to-date information, see www.adni-info.org.

In this work, resting state fMRI and neurocognitive testing data from

the second phase of the ADNI2/GO were used. Our analyses included

82 participants from the original 164 ADNI2/GO individuals with resting

state fMRI scans. Subjects were excluded if (a) their amyloid status was

not available, (b) they were cognitively impaired, but showed no evidence

of amyloid-beta (Aß) deposition, and/or (c) they had over 30% of fMRI

time points censored due to artifacts or head motion (see Section 2.2 for

details). Aß status was determined using either mean PET Florbetapir

standard uptake value ratio cutoff (Florbetapir >1.1; UC Berkeley) or CSF

Aß level ≤ 192 pg/ml [5]. The rationale for excluding Aß-cognitively

impaired participants was to ensure that all impaired subjects had

underlying AD pathology, in an attempt to keep the pathological sub-

strates of cognitive impairment as homogenous as possible in the sample.

Subjects were stratified into five categories based on their diagnosis and

Aß status (Table 1): (a) Aß-cognitively normal individuals (CNAß−, n = 15),

(b) Aß + CN or pre-clinical AD (CNAß+, n = 12), (c) early MCI due to AD

(EMCIAß+, n = 22), (d) late MCI due to AD (LMCIAß+, n = 12), and (e) AD

dementia (ADAß+, n = 21).

We used five outcome measures for predictive modeling from the

ADNI2/GO neurocognitive battery which exhibited a significant

effect of diagnosis (analysis of variance, α = .05) in the 82 subjects

and spanned the cognitive spectrum (www.adni-info.org for proto-

cols): the auditory verbal learning test (AVLT) immediate recall, AVLT

delayed recall, clock drawing, Trail Making B, Animal Fluency. Addi-

tionally, the Montreal cognitive assessment (MOCA) was also included

as a representative clinical measure of global cognition. Of note, all

outcome measures were z-scored, relative to the training data, prior

to predictive modeling to allow for direct comparison between models

across outcome measures.

2.2 | fMRI data processing

We used T1-weighted MPRAGE scans and EPI fMRI scans from the ini-

tial visit in ADNI2/GO (Philips Platforms, TR/TE = 3000/30 ms, 140 vol-

umes, 3.3 mm thickness, see www.adni-info.org for detailed protocols)

for estimation of whole-brain FCs. fMRI scans were processed with an

in-house MATLAB and FSL based pipeline (Amico et al., 2017). This

pipeline follows previously proposed processing guidelines (J. D. Power,

Barnes, Snyder, Schlaggar, & Petersen, 2012; J. D. Power et al., 2014).

For purposes of evaluating reproducibility, we split the processed fMRI

time series into halves (mimicking test and retest) and assigned each

half for each subject as “restA” or “restB” randomly to avoid biases

related to first versus second half of the scan.

TABLE 1 Demographics and neurocognitive comparisons of diagnostic groups

Variable mean (SD) CNAß- (n = 15) CNAß+ (n = 12) EMCIAß+ (n = 22) LMCIAß+ (n = 12) ADAß+ (n = 21)

Age (years) 74.2 (8.8) 75.9 (7.0) 72.6 (5.2) 73.3 (6.1) 73.5 (7.6)

Sex (% F) 64.2 41.7 50 61.6 42.9

Years of education 16.7 (2.3) 15.8 (2.6) 15.2 (2.6) 16 (1.8) 15.4 (2.6)

MOCAa 26.2 (2.6) 25.3 (2.9) 22.3 (4.5) 20.6 (7.1) 13.4 (5.2)

Auditory verbal learning

Immediate recalla
11.1 (3.0) 11.33 (2.9) 9.9 (3.0) 7.6 (2.4) 4.3 (1.6)

Auditory verbal learning

Delayed recalla
6.2 (4.3) 7.8 (3.8) 4.3 (4.0) 2.8 (2.8) 0.4 (0.9)

Boston naminga 28.2 (2.0) 28.7 (1.1) 27.1 (3.1) 25.9 (5.0) 22.4 (6.4)

Animal fluencya 21.1 (3.64) 20.1 (3.6) 18.8 (4.2) 17.4 (4.8) 12.3 (5.0)

Clock drawinga 4.8 (0.4) 4.5 (1.0) 4.6 (0.5) 3.8 (1.3) 3.1 (1.3)

Trail making Ba 69.0 (22.6) 81.4 (19.6) 99.9 (43.1) 131 (89.0) 216.9 (75.6)

Abbreviations: AD, Alzheimer's disease; CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; MOCA,

Montreal cognitive assessment.
aSignificant group effect (Chi-squared or analysis of variance as appropriate, α = .05). Values in parenthesis denote SD.

4 SVALDI ET AL.

http://adni.loni.usc.edu
http://www.adni-info.org
http://www.adni-info.org/
http://www.adni-info.org


We obtained two FC matrices from the restA and restB halves of

the fMRI time-series for each subject. FC nodes were defined using a

278 region parcellation (Shen, Tokoglu, Papademetris, &

Constable, 2013), as previously detailed (Amico et al., 2017), with a

modified more fine grained subcortical parcellation (Mawlawi

et al., 2001), for a total of 286 Gy matter regions. We estimated single

session FC matrices by calculating the Pearson correlation coefficient

(K. Pearson, 1901) between the fMRI time-series of each pair of brain

regions. Each region's time-series was obtained by averaging time-series

of all voxels assigned to that brain region. Regions were assigned to one

of the seven cortical resting state subnetworks (RSN/RSNs): visual (VIS),

somato-motor (SM), dorsal attention (DA), salience (SAL), limbic (L),

executive control (EC), and default mode network (DMN) (Yeo, Krienen,

Chee, & Buckner, 2014), with the remaining regions assigned to a sub-

cortical (SUB) or cerebellar (CER) networks.

2.3 | Differential f

We applied f which uses group level PCA (Hotelling, 1933) to find

the optimal FC reconstruction point for simultaneous optimization of

restA and restB FC reproducibility and between-subject differentiabil-

ity, measured using differential identifiability (Idiff, Figure 1) (Amico &

Goñi, 2018). This section describes the general steps in the frame-

work, while the cohorts on which the data was applied are described

in Section 2.4. In this framework, the “identifiability matrix” I is

defined as the matrix of pairwise correlations (square, non-symmetric)

between the subjects' FCrestA and FCrestB. The dimension of I is N2

where N is the number of subjects in the cohort. Self-identifiability,

(Iself, Equation 1), is defined as the average of the main diagonal ele-

ments of I, consisting of correlations between FCrestA and FCrestB from

the same subjects. Iothers (Equation 2), is defined as average of the off-

diagonal elements of matrix I, consisting of correlations between

FCrestA and FCrestB of different subjects. Differential identifiability (Idiff,

Equation 3) is defined as the difference between Iself and Iothers.

Iself =
1
N

XN

i=1
Ii,i ð1Þ

Iothers =
1

2
N

2

� �X
i≠j

Ii,j ð2Þ

Idiff = 100× Iself− Iothersð Þ ð3Þ

Group level PCA is then applied in the FC domain, on a data

matrix (Figure 1a,b) containing vectorized FCrestA and FCrestB (upper

triangular of FC matrices excluding main diagonal) from all subjects in

a given cohort (see Section 2.4 for information on cohorts). Following

PCA decomposition (Figure 1c,d) all FCs in the cohort are iteratively

reconstructed and Idiff is quantified for a range of number of PCs

(Figure 1e). Optimal FC matrices are reconstructed using the number

of PCs optimizing Idiff. Following implementation of the f framework,

fingerprint at the functional edgewise level for each subject is evalu-

ated for the original FC matrices (matrices reconstructed suing the full

range of PCs) versus optimally reconstructed FC matrices using the

intraclass correlation coefficient (ICC 2,1) (Shrout & Fleiss, 1979).

2.4 | Connectome predictive modeling and cross
validation scheme

The connectome predictive modeling pipeline (CPM) (Shen

et al., 2017) was used to assess the effect of f (Amico & Goñi, 2018)

F IGURE 1 Differential identifiability framework ðf). (a) For each subject, two functional connectomes (FC) matrices (restA and restB) were
estimated for each half of the fMRI time-series. (b) FC matrices were vectorized (upper triangular) and placed into a group FC matrix. (c) Principal
component analysis (PCA) decomposition was performed on the group FC matrix. Each PC can be arranged as a matrix in the FC domain.
(d) Individual FCs were reconstructed using different number of PCs. (e) Idiff was estimated for different number of PCs (in order of explained
variance) and the number of PCs maximizing Idiff found

SVALDI ET AL. 5



on predictive modeling of the aforementioned outcome measures.

Briefly, the pipeline consists of three steps (Figure 2). First, edge selec-

tion (Figure 2b) is performed by computing the correlation between

each edge (from a total of 40,755 edges) and each outcome measure.

Edges exhibiting an absolute value of correlation above a certain

threshold (threshold = 0.1 here) are selected to create a positive cor-

relation mask and negative correlation mask. Second, the model fitting

(Figure 2c) portion of CPM is performed. To estimate a model for each

outcome measure, strength (sum of all edges in the mask) in the posi-

tive and negative masks are used as predictors in a linear regression

model. Third, model validation is performed on external data, typically

using a k-fold cross validation scheme.

For this work, the entire cohort (N = 82) was split into a training

cohort (N = 41) and validation cohort (N = 41) in a split half, cross vali-

dation scheme (1,000 repetitions). This was chosen because split half

cross validation has shown to have the least amount of variance in

performance across repetitions, for a constant training size (Scheinost

et al., 2019). In each repetition, 41 subjects were randomly selected

as training subjects and the other 41 were selected as validation sub-

jects. f was performed separately on matrices containing restA and

restB FCs from training versus validation cohorts. Average Iself, Iothers,

Idiff, R
2 (Figure 3) plus ICC (Figure S1), across the 1,000 repetitions,

are reported for the training versus validation cohorts. Model estima-

tion (one per cognitive outcome) was performed using restA FCs of

the training cohort. The resulting CPM models were then evaluated

on restB FCs of the training cohort (see Section 2.5 paragraph 1–2).

Finally, an external evaluation of the performance of these models

was carried out using the validation cohort. Such evaluation was done

by comparing the performance of models built/tested on original FCs

(reconstructed using the full range of PCs) to the performance of

models built/tested on FCs optimally reconstructed for Idiff (see Sec-

tion 2.5 last paragraph).

2.5 | Assessment of differential identifiability
pipeline on connectome predictive modeling

We first evaluated the stability and specificity of the predictive

modeling pipeline in a test–retest setting on the training subjects

by performing edge selection separately on restA versus restB FCs

(Figure 4). Stability in FC-outcome correlation: For each repetition,

we evaluated stability in edgewise correlation using the Frobenius

norm between restA and restB correlations, where values close to

zero denote high similarity between restA and restB correlation

vectors. Stability in edge selection: We evaluated the similarity of

overlap in selected edges as the number of edges selected (same

sign) using both restA and restB FCs divided by the number of

edges selected using either restA or restB FCs. Specificity of edge

selection: Additionally, we evaluated specificity of edge selection

by calculating average, pairwise Frobenius norms and mask over-

laps across all outcome measures using only restA FCs. Averaged

Frobenius norm and percent overlap over the 1,000 repetitions

was reported for both stability and specificity across the range

of PCs.

We also evaluated the model fitting portion of the CPM pipeline

in a test–retest setting by performing model fitting on restA data and

subsequently evaluating the resulting model on restB data (Figure 5).

Pearson correlation of estimated versus observed outcomes were

used to evaluate model generalizability from restA to restB data in

training subjects. Average Pearson correlation over the 1,000

F IGURE 2 Connectome predictive modeling scheme (adapted from Shen et al., 2017). Black text delineates procedures for each step while
blue text delineates properties that are important at each step to achieve an overall robust model. (a) The goal is to predict the outcome measure
from functional connectomes (FC) data. (b) Edgewise correlations were performed with outcome of interest. Most significantly positively and
negatively correlated edges were selected. Here stability of edge selection regardless of restA versus restB FC data used is important. (c) Strength
in the positive and negative restA masks were computed using restA FCs. Strengths were used as regressors in a linear model predicting the
outcome measure. Here is important that the resulting model generalize to restB data from the same subjects. (d) Model generalizability to
validation data was assessed. Here, it is important that the final model is generalizable to external data
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repetitions are reported for restA FCs (Figure 5 left) and restB FCs

(Figure 5 right) reconstructed across the range of PCs.

Finally, we compared performance of the models estimated from

training subjects on the FCs of validation subjects (Figure 6). Here it is

important to note that the optimal restA-restB averaged FCs share an

average correlation of .99 with the original restA-restB averaged FCs.

However, the optimally reconstructed restA and restB FCs are much

more correlated to each other (Figure 3), and individually more

F IGURE 3 Mean of identifiability framework ðf) assessments on training cohort (left) and Testing cohort (right). Connectome level
identifiability assessment. Iself and Iothers represent similarity between test and retest functional connectomes (FCs) of the same versus different
subjects, respectively, across number of PCs used for reconstruction. Differential identifiability (Idiff) is the difference between Iself and Iothers. The
cumulative percent explained variance (100×R2) across number of PCs used for reconstruction is also included

F IGURE 4 (Left) (Colored Lines) Frobenius norm of correlation matrices associated to each outcome measure for restA functional
connectomes (FCs) versus restB FCs. (Black line) Average pairwise Frobenius Norm of correlation matrices between two different outcome
measures using only restA FCs. (Right) (Colored Lines) Mask overlap between restA FCs versus RestB FCs, for each outcome measure. (Black
Line) Average pairwise mask overlap between two different outcomes using only restA FCs
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correlated to their average (.99 average correlation) than are the origi-

nal restA and restB FCs (.87 average correlation). This means that by

performing f , we obtain two good quality FCs where we previously

obtained one. Because of this, for original FCs, we ran edge selection

on the restA-restB averaged FC and applied the masks and the model

coefficients from the average restA-restB FC matrix of training

subjects to the restA-restB average FC matrices of validation subjects.

However, for optimal FCs, we ran edge selection separately on restA

versus restB FCs and took the intersect mask, representing those

edges which were robust across both masks. We then used this mask

to estimate two separate models using restA FCs versus restB FCs.

Finally, we averaged the coefficients from these two models before

F IGURE 6 Model performance in validation cohort across 1,000 repetitions. Asterisk indicates outcomes for which performance was
significantly improved in optimally reconstructed functional connectomes (FCs) versus original FCs (non-parametric permutation test, α = .01

corrected using tmax method). The center line of each box corresponds to the median and the bounds to the 25th and 75th percentiles. Outliers
are defined using 1.5*inter quartile range. (left) Correlation between estimated and expected outcomes in original FCs from the validation cohort.
Models were fit using original FCs from the training cohort. (middle) Correlation between estimated and expected outcomes in optimally
reconstructed FCs from the validation cohort. Models were fit on optimally reconstructed FCs from the training cohort. (right) Difference in
correlation between optimally reconstructed FCs and original FCs

F IGURE 5 For all plots, restA Training functional connectomes (FCs) were used for edge selection and model fitting. (left) Correlation
between estimated and expected outcomes from models fit using restA FCs. (right) Correlation between estimated and expected outcomes when
models fit on restA Training FCs were applied to restB FCs from the same subjects
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applying the model and masks to the testing data. The model from the

training data was applied separately to restA and restB sessions from

the testing data and the two predictions were averaged. Pearson cor-

relation was again used to evaluate performance of the model on the

validation subjects. Averaged Pearson correlation over the 1,000 rep-

etitions is reported for original FCs and for optimal FCs. To compare

performance of models built/tested on original FCs versus models

built/tested on optimally reconstructed FCs, non-parametric paired

permutation tests (α = .01, 1,000 permutations, corrected using tmax

method) (Blair & Karniski, 1993), using original FCs versus optimal FCs

at each repetition as paired samples, were conducted on the Pearson

correlations.

2.6 | Effect of pre-processing on f-CPM workflow

As a supplementary analysis, we split the timeseries prior to pre-

processing for evaluation of the effect of splitting data prior to versus

after pre-processing on the f -CPM workflow. We were not able to

implement the splitting of the time series directly in half prior to pre-

processing as such change greatly compromised the resulting FC, as

expected, due to the short scanning length (7min). Thus, we followed

previously proposed guidelines (Horien et al., 2018) and split the time

series by taking interleaved time points (as if TR = 6 s). We then

repeated the entire scheme described above on connectomes gener-

ated from time series split prior to pre-processing. As such we gener-

ated f-CPM workflow results using two different approaches: (1) by

processing the entire timeseries then splitting the pre-processed time

series in half and (2) by splitting the timeseries in an interleaved fash-

ion then pre-processing the split time series separately.

To test the effect of pre-processing on the FC matrices, we per-

formed pairwise correlations on restA-restB averaged matrices from

(1) versus (2) (Figure S9a). This allowed us to compare how similar

restA and restB connectomes when generated using (1) versus (2).

We also performed a permutation test (α = .05, 1,000 permutations)

on the Iself values in the main diagonal of the original I matrices (aver-

age across 1,000 repetitions) generated for (1) versus (2). This allowed

us to test whether splitting the data prior to pre-processing versus

splitting the data after pre-processing affected the initial similarity

between restA FCs and restB FCs from the same subjects (Figure 3

vs. S9b). To elaborate on the effect of pre-processing on the entire f

-CPM workflow, we report qualitative comparisons of the behavior

across the range of PCs of f , edge selection, and model generalizabil-

ity in CPM for (1) versus (2) (Figures 4–6 vs. S9c–f).

2.7 | Association of resting-state networks to
cognitive outcomes

Final masks for each outcome measure were defined by edges that

appeared in at least 95% of the 1,000 repetitions. We used binomial

tests (α = .05, uncorrected) for each outcome measure to assess

whether specific RSNs (e.g., DMN-DMN), or their interactions

(e.g., DMN-FP), were overrepresented in these masks beyond what

could be expected from an equal number of edges chosen at random.

Edges from overrepresented networks (or interactions) were visual-

ized using BrainNet viewer (Figures 7 and S3–S8) (Xia, Wang, &

He, 2013).

3 | RESULTS

3.1 | Differential identifiability

For both training and testing cohorts, Idiff peaked at 41 PCs regardless

of repetition (Figure 3, mean training Idiff = 67.09 and mean validation

Idiff = 68.77, mean training Iself = 81.62 and mean validation

Iself = 81.68, mean training Iothers = 32.46 and mean validation

Iothers = 33.01, mean training % variance explained = 71.86, mean vali-

dation % variance explained = 71.80). We observed an almost twofold

increase in differential identifiability in the optimally reconstructed

data (Figures 3 and S1). Such increase in whole-brain differential

identifiability also increased the fingerprint at the functional edge

level, as shown when using mean ICC (Figure S2).

3.2 | Edge selection—Stability and specificity

Stability in edge selection between restA and restB (Figure 4, colored

lines) exhibited an optimal and stable range between 10 and 41 PCs

both in terms of correlations and resulting selected edges associated

to each outcome. The Frobenius norm of the edgewise correlation

associated to each outcome measure (Figure 4 left) exhibited stable

range of minimal divergence between RestA and RestB (10–41 PCs)

after which divergence began to monotonically increase for all out-

come measures. Overlap (Figure 4 right) between edges selected in

RestA and RestB exhibited an optimal range of overlap (68% Clock

Score–76% Trail Making B) in the range of 10–41 PCs, then monoton-

ically decreased after 41 PCs for all outcome measures. Specificity of

edge selection, measured as pairwise similarity across outcomes

(Figure 4, black lines), was stable across PCs for both the Frobenius

norm and mask overlap. It is critical to highlight that when all PCs

were used for reconstruction (i.e., using original FC data) restA-restB

similarity (colored lines) approached similarity across outcomes of

restA masks (black line).

3.3 | Training data: Test–retest generalizability

At the model fitting step, the performance of models built on restA

data was evaluated on restA and restB FCs from the same subjects.

For restA connectomes, on which the models were built, correlation

between the predicted and estimated outcomes increased as the

number of PCs increased, though at a slower rate after the optimal

reconstruction point for Idiff (Figure 5 left). In contrast, correlation

between the predicted and estimated outcomes peaked at the optimal
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reconstruction point for Idiff in the training data (41 PCs) when the

model was applied on restB connectomes (Figure 5 right) and slightly

decayed after 41 PCs.

3.4 | Validation cohort: generalizability

Model performance was measured as mean correlation between the

estimated and predicted outcomes across repetitions. Model perfor-

mance was compared between original FCs and optimally

reconstructed FCs. Model performance from original FCs from the

validation cohort ranged from 0.05 (±0.13) to 0.24 (±0.13) across out-

comes (Figure 6 left). Model performance from optimally

reconstructed FCs from the validation cohort ranged from 0.07

(±0.12) to 0.26 (±0.13) across outcomes (Figure 6 middle). Model per-

formance on validation data was significantly higher for optimally

reconstructed FCs versus original FCs in 5 of 7 outcomes (paired per-

mutation test, α = .01, 1,000 permutations) (Figure 6 right).

3.5 | Effect of pre-processing on f-CPM workflow

FCs were generated (1) by processing the entire timeseries together,

then splitting the pre-processed time series in half and (2) by splitting

the timeseries in an interleaved fashion (see Section 2.6), then pre-

processing the split time series separately. The average pair-wise cor-

relation between FCs generated by (1) versus (2) was .77. Iself values,

which measures correlation of restA FCs and restB FCs produced

using the same method, were not significantly different between the

two methods (Figure 3 vs. S9b). Stability and specificity in edge selec-

tion behaved similarly for the two methods (Figure 4 vs. S9c). Simi-

larly, generalizability of restA models to restB models behaved

similarly for the two methods. (Figure 5 vs. S9d). Finally, when fMRI

series were split prior to pre-processing, optimally reconstructed FCs

generalized significantly better than original FCs to the validation

cohort in 4/7 outcomes.

3.6 | Association of resting state networks to
cognitive outcomes

We identified RSN interactions playing significant roles in prediction

of each cognitive outcome and then assessed patterns in RSNs

involved across cognitive outcomes (Table 2). Interactions involving

the DMN and the VA networks were most common (19 selection);

followed by the VIS network (16 selections); the SM, EC, and CER net-

works (15 selections); the SAL and SUB networks (14 selections), and

finally the L network (9 selections). Within network connections had a

F IGURE 7 Overrepresented edges (binomial test, α = .01) for the animal fluency test. Positively associated edges (left) and negatively
associated edges (right) are visualized separately. Nodes are sized according to their degree and colored according to resting state network
membership. Positive mask edges are colored blue while negative mask edges are colored red
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significant role in five masks, while between network connections

played a significant role in all masks. A total of 34 out of 45 possible

RSN interactions were significantly over-represented, in either the

positive or negative mask, across outcomes. RSN interactions that

were overrepresented in the prediction of MOCA included DA-VA,

DA-L, L-CER and SUB-CER in the positive mask for MOCA (Figure S3

left) and SM-L, SM-SUB, DA-L, DA-CER, SAL-EC, and EC-EC interac-

tions were significantly over represented in the negative mask

(Figure S3 right). For AVLT immediate recall, VIS-SM, VIS-SAL, and

SUB-CER interactions were significantly over represented in the posi-

tive mask (Figure S4 left) and SM-DA, SM-SUB, SAL-EC, and SAL-

DMN were significantly over represented in the negative mask

(Figure S4 right). For AVLT delayed recall, VIS-SM, VIS-DMN, L-CER,

SAL-CER, EC-CER, and DMN-CER were over represented in the posi-

tive mask (Figure S5 left) and SAL-DMN, DMN-DMN, and SUB-CER

were significantly over represented in the negative mask (Figure S5

right). For Boston Naming, VIS-VIS, VIS-SAL, SM-DA, DA-SAL, DA-

CER, L-DMN, EC-SUB, and DMN-SUB were over represented in the

positive mask (Figure S6 left) and VIS-DA, VIS-DMN, SM-SUB, SM-

CER, DA-DMN, and EC-DMN were over represented in the negative

mask (Figure S6 right). For animal fluency, VIS-SM, VIS-SAL, VIS-L,

VIS-DMN, DA-SAL, L-DMN, and L-CER were significantly over repre-

sented in the positive mask (Figure 7 left), while VIS-DA, VIS-DMN,

and SM-DA were significantly over represented in the negative mask

(Figure 7 right). For clock drawing, SM-EC, and EC-SUB were signifi-

cantly over represented in the positive mask (Figure S7 left), while

VIS-SUB, SM-SUB, DA-SUB and EC-DMN were significantly over rep-

resented in the negative mask (Figure S7 right). Finally for Trail

Making B, VIS-DA, SM-SUB, DA-CER, SAL-EC, EC-EC, EC-DMN, and

DMN-CER were over represented in the positive mask (Figure S8 left),

while SM-SAL, DA-DA, DA-EC, DMN-DMN, and CER-CER were sig-

nificantly over represented in the negative mask (Figure S8 right).

4 | DISCUSSION

Our work provides a comprehensive whole brain and whole cognitive

spectrum view on the relationship between resting-state functional

connectivity and cognition in AD and makes progress toward making

subject level predictions of cognition from FC biomarkers. We accom-

plished that by improving the robustness of connectome predictive

models of AD using f , which improved test/retest generalizability of

these models and allowed for significantly improved predictions of

cognition from external FC data for all seven outcomes evaluated.

Finally, robust edge selection allowed for identification of RSN motifs

associated with cognitive deficits in AD.

4.1 | Differential identifiability

The use of FC as a biomarker in clinical settings requires major

advancements in subject level identifiability of FC. In this work, we

improve subject level FC identifiability, as measured using differential

identifiability, using group level PCA. As demonstrated by other

datasets (Amico & Goñi, 2018; Bari, Amico, Vike, Talavage, &

Goñi, 2019), the number of PCs necessary to optimize differential

identifiability corresponded to the number of subjects in the cohort

(Figure 3, blue line). This indicates that while the dimensionality of the

TABLE 2 Significantly overrepresented resting state networks for
each outcome measure

Significant resting state networks

Outcome measure
Positive
mask

Negative
mask

MOCA DA-VA

DA-L

L-CER

SUB-CER

SM-L

SM-SUB

DA-L

DA-CER

SAL-EC

EC-EC

Auditory learning immediate

recall

VIS-SM

SAL-SAL

SUB-CER

SM-DA

SM-SUB

SAL-EC

SAL-DMN

Auditory learning delayed recall VIS-SM

VIS-DMN

L-CER

EC-CER

DMN-CER

SAL-DMN

DMN-DMN

SUB-CER

Boston naming VIS-VIS

VIS-SAL

SM-DA

DA-SAL

DA-CER

L-DMN

EC-SUB

DMN-SUB

VIS-DA

VIS-DMN

SM-SUB

SM-CER

DA-DMN

EC-DMN

Animal fluency VIS-SM

VIS-SAL

VIS-L

VIS-DMN

DA-SAL

L-DMN

L-CER

VIS-DA

VIS-DMN

SM-DA

Clock drawing SM-EC

EC-SUB

VIS-SUB

SM-SUB

DA-SUB

EC-DMN

Trail making B VIS-DA

SM-SUB

DA-CER

SAL-EC

EC-EC

EC-DMN

DMN-CER

SM-SAL

DA-DA

DA-EC

DMN-DMN

CER-CER

Note: RSNs (e.g., DMN-DMN) or their interactions (e.g., DMN-EC)

represented above chance in edge selection (binomial test, α = .05).

Abbreviations: CER, cerebellar network; DA, dorsal attention; DMN,

default mode network; EC, executive control/fronto-parietal; L, limbic;

SAL, salience/ventral attention; SM, somato-motor; SUB, subcortical; VIS,

visual.
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input data is twice the number of subjects (due to inclusion of test

and retest data), the subject dimensionality of the data is the cutoff

for a more accurate representation of individual FC, when considering

small-moderate sample sizes. Additionally, we observe a very sharp

drop-off after the peak in Idiff as was also observed by (Amico &

Goñi, 2018) when f was performed on FCs generated from split time

series. Finally, as shown previously (Amico & Goñi, 2018), optimizing

Idiff, a coarse whole brain measure (Figure 3 blue line showing Idiff and

Figure S1), also robustly increased test–retest reliability at the level of

individual edges (Figure S2). Optimally reconstructed FCs retained

80% of the variance in the from the original FC data (Figure 3 black

dashed line), indicating that around 20% of variance present in original

FC estimates is not representative of robust individual characteristics,

despite the extensive preprocessing of BOLD time series used here

and described in detail in (Amico et al., 2017). It is important to note

that splitting an fMRI session mimics the most ideal test–retest sce-

nario where all conditions are maintained as homogenously as possi-

ble, including scan conditions, mental state, and motion artifacts.

Therefore, we would hypothesize self-identifiability for these subjects

to be very high even for original FCs reconstructed using the full

range of PCs. However, the average Iself for original FCs is only 60%,

in comparison to 81% for optimally reconstructed FCs. Thus, using

the f framework allows us to obtain two “quality” individual FC

reconstructions from the same acquisition where we previously

obtained one. Finally, we observed that the optimal Idiff for this

dataset is much higher than what we saw in previous data where Idiff

was optimized by splitting the resting state time series in half

(Amico & Goñi, 2018). We speculate that these more dramatic

improvements indicate that datasets with coarse temporal acquisition

or datasets including clinical populations may benefit to a greater

degree from this group level PCA cleaning technique in order to

improve individual level estimates of FC. However, this remains to be

confirmed in additional similar datasets and across clinical diseases.

4.2 | Effect of differential identifiability on
connectome predictive modeling

When assessing clinical populations with CPM, one of the ultimate

goals is to identify critical functional subcircuits associated with spe-

cific cognitive deficits. Therefore, a minimum criterion that must be

met is that edge selection should be robust between test/retest data

(e.g., fMRI runs or sessions) from the same subjects. Thus, we took

advantage of previous splitting of fMRI data into restA and restB for

purposes of uncovering connectome fingerprinting to compare edge

selection performed separately on for restA versus restB FCs. Using f

, we were able to improve the robustness of CPM in identifying func-

tional subcircuits associated to specific cognitive deficits. Stability of

edge selection displayed an optimal regime (12–41 PCs), after which it

exponentially worsened for all outcome measures (Figure 4; see col-

ored lines). Overlap between restA and restB edge selection (Figure 4)

for optimally reconstructed data increased by an average of 30% from

raw data, with an average peak overlap of 65% across outcome

measures.

f did not affect the relative specificity in edge selection across

outcome measures (Figure 4, black lines). Frobenius norm between

outcomes remained constant around 40 and mask overlap remained

constant at around 30%. This implies that the “distance” between

mappings of different outcomes is preserved across PCs whereas the

distance between restA-restB mappings for a single outcome is

reduced as we move from original FCs to optimally reconstructed FCs

(1/2 total number of PCs). It is noteworthy that for original FCs

(equivalent to reconstructing with all PCs) restA-restB overlap

approached overlap across outcomes. This implies that mappings of a

single outcome based on two sessions of FCs of the same subjects are

as non-specific as the mappings of different outcomes using a single

session of FC. From a clinical standpoint, where understanding which

brain systems are affected is as important as predicting cognitive out-

comes, this situation hampers the utility of the model. This situation is

highly alleviated when performing the f prior to CPM, where restA-

restB Frobenius norm is significantly lower than across outcomes

(Figure 4 left) and restA-restB mask overlap is significantly higher than

across outcomes (Figure 4 right).

In addition to improving robustness of edge selection, we also

modestly improved prediction of cognitive and behavioral outcomes

in new FC data from the same subjects using f . More importantly,

the addition of a test/restest validation step to CPM showed that

reconstructing FC at the optimal point for Idiff reduces overfitting to

the training data as evidenced by a continued increase in model per-

formance after 41 PCs for restA data from Training subjects versus a

decrease after 41 PC for restB data. However, as optimally

reconstructed restA and restB FCs come from the same orthogonal

bases, it could be argued that their independence is further reduced

upon implementation of the f , thus the improved prediction. By tak-

ing advantage of having two good quality FCs for each subject at the

optimal reconstruction point, we showed that optimal reconstruction

of FC significantly improved the generalization of models from the

training cohorts to the validation cohorts for 5/7 the cognitive out-

comes (Figure 6), although variable performance was observed across

repetitions. Note that the differential identifiability pipeline was run

separately on the training and validation cohorts at each repetition,

thus fully maintaining the independence of training data and

validation data.

We showed that splitting the timeseries prior to pre-processing

did not significantly affect the impact of f on CPM (Figure S9). Split-

ting the time after pre-processing versus before pre-processing pro-

duced similar FCs, though there was variability in subject-wise FC

similarity using the two approaches (Figure S9a). Similarity between

restA and restB connectomes from the same subjects, as measured by

Iself, was not significantly different between the two pre-processing

approaches (Figure 3 vs. S9b). Similarly, f affected CPM equivalently

for both pre-processing approaches (Figures 4–6 vs. S9c–e). This indi-

cates that the effects of f on CPM are robust to separate pre-

processing. However, testing of the effect of f on CPM when
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splitting the timeseries directly in half or when using FCs generated

from two independent sessions, still needs to be directly assessed.

4.3 | Association of resting state networks to
cognitive outcomes

Previous literature making predictions from ADNI fMRI data focused

solely on prediction of global cognitive status (Lin et al., 2018) or diag-

nostic status (Dadi et al., 2019). In contrast, we assessed the involve-

ment of RSN systems (within and between) across cognitive deficits in

AD to shed light on how FC affects cognition in AD. We found several

motifs consistent with previously reported literature about the role of

RSNs in AD and in general cognition. The most commonly selected

networks were the DMN and the DA networks. The central role of

the DMN in AD (Brier et al., 2012; Buckner et al., 2005; Garces

et al., 2014; Zhou et al., 2010) and its strong associations with amyloid

(Buckner et al., 2005; Hedden et al., 2009; Sperling et al., 2009; Wang

et al., 2013) and tau deposition (Cope et al., 2018; Jones et al., 2016;

Wang et al., 2013) has been consistently documented. The large num-

ber of tasks with significant attention components (AVLT immediate

recall, Boston naming, Trail Making B) likely explains the strong

involvement of interactions with the DA network being significantly

overrepresented across cognitive outcomes.

Associations of within RSN interactions and cognitive function

showed strong coherence to previous literature regarding the roles of

RSNs in cognition and AD. We found within SAL network connectiv-

ity to be predictive of performance in immediate recall. This associa-

tion is anatomically coherent as the primary role of the SAL network

is in detecting salient stimuli (in this case words being spoken) and

recruitment other networks to integrate these stimuli (Peters, Dun-

lop, & Downar, 2016). Disruption of the salience network has been

found in MCI subjects in a previous study (Chand, Wu, Hajjar, &

Qiu, 2017). Additionally, we found within VIS connectivity to be pre-

dictive of performance in the Boston Naming task. The involvement

of the visual system in this task is obvious as it consists of confronta-

tional word retrieval from pictures (Kaplan, Goodlass, &

Weintraub, 1983). We found within network EC connectivity to be

predictive of performance in MOCA and Trail Making B, both of

which contain a significant executive functioning component

(Arbuthnott & Frank, 2000; Nasreddine et al., 2005). The EC network

is known to play a role in working memory and in the organization of

goal oriented behavior (Mansouri, Rosa, & Atapour, 2015).

The association of between RSN interactions and cognitive out-

comes is also coherent with previous literature and further sheds

additional light on how FC alterations in AD affect cognition. We

found that functional connectivity between the EC network and the

SAL network was consistently associated with cognitive outcomes

that included a large attention component (MOCA, AVLT immediate,

Trail Making B). SAL-EC interactions have previously been associated

to performance on MOCA (Chand et al., 2017). We also identified that

interactions between the VIS network and other RSNs were consis-

tently associated with tasks that required item generation in the

context of verbal memory retrieval (i.e., AVLT immediate and delayed

recall, Boston Naming Test) or spontaneous generation of items

belonging to a given category (i.e., animal fluency). This finding sug-

gests an interactive role of the visual system with other functional

subcircuits when executing tasks requiring semantic organization and

imagery. This role of the visual system is supported by other studies

identifying activation of the visual cortex and cognitive networks in

imagery and semantic association tasks (Cattaneo, Vecchi, Pascual-

Leone, & Silvanto, 2009; J. Pearson, Naselaris, Holmes, &

Kosslyn, 2015). Additionally, the visual cortex has also been implicated

in visual short term memory and working memory (Cattaneo

et al., 2009). Furthermore, in AD, connectivity of the visual system

has been previously associated to neurofibrillary tangle deposition

(Jones et al., 2016) and with cognitive complaints in cognitively nor-

mal or MCI subjects (Contreras et al., 2017). We identified interac-

tions of the SM network with the EC network in the Clock Drawing

task, reflecting the need for organizational planning of movement

associated with the task. The involvement of these networks in the

clock drawing task was also found in previous fMRI experiments using

the clock drawing task on healthy aging subjects (Talwar et al., 2019).

We furthermore consistently saw a significant role of cerebellar con-

nectivity in tasks with significant motor components. Intra-cerebellar

network connectivity in Trail Making B and between network cerebel-

lar connections were associated with performance on Trail Making B

as well as MOCA (Note: the Trail Making B task is a subset of the

MOCA battery) (Nasreddine et al., 2005).

Overall, findings of RSN associations consistent with previously

reported roles of these RSNs in cognition and AD indicates that our

unified framework not only produces robust prediction, but also pro-

duces anatomically coherent mapping of cognitive deficits to resting

state functional connectivity. In depth analysis of whole brain associa-

tions between FC and cognition furthers the understanding of how

changes in FC impact cognition in AD.

4.4 | Limitations and future work

The unified identifiability-CPM framework proposed here provides

many opportunities for improving the clinical utility of FC. However,

an important and necessary step to improve the clinical utility of FC is

to evaluate results obtained using this unified framework on a

completely external dataset such as ADNI3, which includes similar

acquisition from different scanner types. This will require the estima-

tion of final hyper parameters from the ensemble of those estimated

here using the entire ADNI2 cohort and the edges appearing in the

final masks. In addition to external validation of the framework, our

results indicate that there are other opportunities to improve both

edge selection and predictive capability of FC. Despite showing signif-

icant improvement in robustness of edge selection using our frame-

work, we were still under 80% test/retest overlap in edge selection

for all outcome measures. Edge selection may potentially be improved

by taking into account the network relationship between edges, as

opposed to using edgewise correlation with thresholding which treats
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edges as univariate independent entities. This has been previously

done using methods such as partial least squares regression (Yoo

et al., 2018). One could also incorporate concepts from the Network

Based Statistics framework to control for spurious, small connected

components (Zalesky, Fornito, & Bullmore, 2010). Controlling for such

components would allow the edge selection step to be thought of as

the identification of the functional subcircuits associated with a given

outcome, enabling the use of network science measurements (Avena-

Koenigsberger et al., 2017; Bullmore & Sporns, 2009; Sporns, 2013)

which may provide additional predictive power and provide further

insight into the mechanisms of cognition and behavior. Thus, incorpo-

rating such methodologies may provide additional improvements in

prediction to those shown here. As within and between network con-

nections tend to have different properties (Noble et al., 2017),

another avenue to test could be estimating separate masks and coeffi-

cients for within and between RSN connections. Finally, CPM may

also prove useful in predicting change in cognitive outcomes over

time (Pena-Nogales et al., 2018), thus assessing the effect of differen-

tial identifiability on connectome predictive of longitudinal outcomes

in AD would be a worthy contribution toward improving FC utility as

a clinical biomarker.

5 | CONCLUSIONS

Our framework improved the robustness of individual level prediction

of cognition from FC, which is the first step toward clinical use of FC

and better understanding of how functional connectivity supports

cognition in AD. We showed that the joint framework of differential

identifiability with connectome predictive modeling improves the

quality of models obtained from CPM in terms of stability of edge

selection, test/retest generalizability, and generalizability to external

data. Additionally, we showed that the use of two FC sessions from

each subject provides a unique perspective when assessing and vali-

dating connectome predictive models. Finally, improving the robust-

ness of edge selection allowed for reliable assessment of the

associations between functional connectivity and cognitive deficits in

AD. Our findings indicate both specific and global associations of rest-

ing state functional connectivity with cognitive deficits in AD which

are consistent with previous literature regarding the roles resting state

networks play in both cognition and AD.
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